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TECHNICAL MEMORANDUM NO. 1231

REPORT ON INVESTIGATION OF DEVELOPED TURBULENCE*

By L. Prandtl

The recent experiments by Jakob and Erk (reference 1) on the
resistance of flowing water in smooth pipes, which are in good agreement
with earlier measurements by Stenton and Pannell (reference 2), have
caused me to change my opinion that the empirical Blasius law (resist-
ance proportional to the 7/4+ power of the mean veloclty) was applicable
up to arbitrarily high Reynolds numbers. - According to the new tests
the exponent approaches 2 with increasing Reynolds number, where 1t
remains an open question whether or not a specific finite limiting
value of the resistance factor A 1s obtained at R = .

With the collapse of Blasius?! law the requirements which produced
the reletion that the velocity in the proximity of the wall varied in
proportion to the Tth root-of the wall distance must also become vold
(reference 3). However, it is found that the fundamental assumption
that led to this relationship can be generalized so as to furnish a
velocity distribution for any empirical resistance law. These funda-
mental assumptions can be so expressed that for the law of velocity
distribution in proximity of the wall as well as for that of frictlon
at the wall, a form can be found in which the pipe dlameter no longer
occurs, or in other words, that the processes in proximity of a wall
are not dependent upon the distance of the.opposite wall.

For the velocity u (time average velue) at y distance from the
wall only one nondimensional can then be formed, namely, %F (v = kine-

matic viscosity), giving for u a formula of the form

u = co(3) (1)

where C 1is a velocity and ¢ an arbitrary function. The shearing
stress at the wall then must be

T = ¢pc? : (2)

where C is a constant.

#"Bericht iiber Untersuchungen zur ausgeblldeten Turbulenz.'
Zeltschrift flir angewandte Mathematik und Mechanik, vol. 5, no. 2,
April 1925, pp. 136-139.
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To obtain the function ¢ we proceed from the value 3 1o i, which
by theory would be constant = T and put
diny

vhere o = Zn%?. With Wmu=17n and Iny = o - q + Iny, formula (3)
becomes
do

an = f(o) + 1,

[

and, after integration and removal of logarithms,

S At ()
u = Ce flo) + 1
which, after including
c
_ Ve -
y =0 (<)

gives the veloclity profile in parsmeter representation.

The  empirical law for wall friction reads T= Xpﬁ?, with » a

function of %% (i = mean velocity, a = pipe dlameter).

Discounting for simplicity the difference between the mean velocity
and the velocity in the center u; and assuming for it the value from
formula (4), although it is no longer exactly true in the pipe center,

u; a

we put with oy = an%—

- in) = g(dl) (6)
By (2) and (4) we get
91
" ) ?f do
t =T =T L _ e flo) +1
o2 pw? C2
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or

1 do
it = - g(og) +2 f(o) + 1 = const. (7

hence after differentiatlion with respect to oy

g'(o1) =l_+§(_017 or £(o) =—2_?%c'r_)(1)_ (8)

With thislthe problem is solved and it is readily seen that f(o),
which for g'(o) =‘% assumes the value T as before, increases with

decreasing g'(o). A more accurate experimental check is awalted, but
even so it 1s plainly seen that at Reynolds numbers of about 200,000

the 8th root of the wall distance 1s definitely better than the Tth root.
For g'(c) =1, £(0) = 1, which corresponds to the laminer boundary

zone.

Furthermore I would like to spesk of a formula intended for a
hydrodynemic celculetion of the distribution of the base flow of a
turbulent motlon under the most varied conditioms.

After various frultless attempts gratifying success was attained.
In addition it was found that the formula for the apparent shearing
strese T produced by the interchange of momentum, lends itself to a
very clear explanation.

In the Boussinesg formule T = pe%?, € 18 a measure for the
turbulent "exchange" and in its dimension, which is the same as that
of V, 1t is the product of a length and a velocity. The velocity is
the transverse veloclty w at which on the average the fluild bodies
advancing fram both sides pass through the layer with the time average
value of the velocity = u.

The liguid bodies coming from the side of the greater velocity
entertain higher values of velocity u, those from the side of smaller
velocitles, smaller values, with the result that more and more momentum
is transported in one direction than in the other (excepting the point
of umax). The desired length 1 1is characterized by the fact that it
indicates the distance of the particular layer, in which the average u
veloclties, which the liquid bodles have at their passage, are found as the
time average value of the flow velocity. Approximsted these velocities
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are u + l%? end u - Z%?. (Incidentally 1 is in agreement in order

of magnitude with the dlameter of the fluld bodles (more accurately it
is the decelerating path of the fluld bodies in the remaining fluid,
which 1s, however, proportional to the diemeter).) As to the length 1
it can, for the present, only be stated that it must approach zero at
the wall, where only bodies of smaller diameter than the wall distence
can move as dlscussed. FElsewhere 1 1s to have a very regular distri-
bution. If B 1s the gverage proportional share of the surface

occupled by the fluild bodles entering from one side, a momentum Bpr%?
per second passes at thls sgide through the unit surface, and approxi-
mately the same amount from the other side. This confirms the Boussinesq

theorem, so we can put € = 2Bwi.

The next problem is to find a practical formmla for the mixing
gpeed w. This mixing speed 1s rapidly reduced and must be
contlnuously renewed. Hence the assumption that it 1s produced at the
concurrence of two bodies of different velocity u and therefore i
proportional to the veloclty difference, that is, the magnitude of 1

du
With thls, however, if all unknown numericel factors are thrown on ¥
the not more accurately known length 1, the apparent shearing stress
becomes .

du

du
3y (9)

T = p12 ay

This formula necessltates a correction for the case that g? = Q.

For the creatlon of velocity w the neighborhood in a certain

width cooperates; 1t does not become zero when du 03 1t rather can

dy
be put proportional to g, stetistlcal average value of %?
2 .
proportional to <%§9 . If the veloclty profile varies in flow direc-
tion, as in convergent divergent chamnels, the points over which the
averages are mede must be shifted upstream for a certain amount, since
the process of develomment of the velocity w takes time.

that is

Formula (7) has already proved itself in many respects. In a pipe,
for Instance, the shearing stress 1s asccording to the equilibrium con-
ditions proportlional to the distance r from the center, hence

2
T = ;pze(%l) = ¢r
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Assuming 1 as constant gives
u=A - Br3/2 (10)

for r > 0, the reflection for r < O (fig. 1). At r = 0 the radius

of curvature 1s then equal to O; taking Instead of % the previously

discussed statlsticel value that can be approximately written as

dy, ay°
velocity distributions (reference 1, p. 21) exhibit the singuler behavier
of the center very plainly (fig. 1). The refinement Just mentioned
needs to be applied only where increased accuracy requirements are
involved. The tctal velocity distribution in the pipe is falrly accu-

rately obtalned when (in the range of the 1/7 power law) 1 is put
proportional to I:(a -r)(a + rzl 6/7, e = pipe radius.

. 2
2 2
du + 7.'2(9—11') the curvature at 'r = 0 is finite. The actual

The foregol formulas have also been applled to the case of the
"free turbulence, that 1s, flows without confining walls, as for
example, of a fluid Jet diffusing in a chember and to the intermingling
of a homogeneous air stream wlth the adjacent air at rest, which is
entralined by it. For stationary flows of this type the formula 1 = cx
is appropriate, x bDelng the distance from the point where the mixing
starts. The case reproduced in figure 2 leads to the differential

equation for the stream function F(%)

n

2¢r"F" £ " = 0

which is solved by F' =0 or by 2c¢F" + F = 0. The two solutions of
uniform veloclty and variable velocity abut in F"' with discontinuity.
This and other calculations were numerically carrled out by Tollmien,
who is to publish an article on it. The agreement of his calculations
wilth experimental data ls excellent.

Further experimental studies included the velocity distributions
in chammels of other than circular sections with verylunusual results
and for which the explanation has not yet been found.™ Slightly

1Tt is approximately so that wul plotted against the cross
section of the channel gives a sloping surface.
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divergent and convergent smooth-walled channels have also been lnvesti-
gated, rough-walled channels are in preparation. It 1s hoped that our
formula wlll prove 1tself here also.

Translated by J. Vanier
Natlonal Advisory Committee
for Aeronautics
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